Астрономический сайт

Загадки земли и вселенной

Новые звезды

Звезды
Во время вспышки блеск новой увеличивается на 12-13 звёздных величин, а выделяемая энергия достигает 1039 Дж (такая энергия излучается Солнцем примерно за 100 тыс. лет!). До середины 50-х гг. природа вспышек новых звёзд оставалась неясной.Но в 1954 г. было обнаружено, что известная новая звезда DQ Геркулеса входит в состав тесной двойной системы с орбитальным периодом в несколько часов. В дальнейшем удалось установить, что все новые звёзды являются компонентами тесных двойных систем, в которых одна звезда — как правило, звезда главной последовательности типа нашего Солнца, а вторая — компактный, размером в сотую долю радиуса Солнца – белый карлик.
DQ Геркулеса - новая звезда
DQ Геркулеса - новая звезда

Орбита такой двойной системы настолько тесна, что нормальная звезда сильно деформируется приливным воздействием компактного соседа. Плазма из атмосферы этой звезды может свободно падать на белый карлик, образуя вокруг него аккреционный диск. Вещество в диске тормозится вязким трением, нагревается, вызывая свечение (именно оно и наблюдается в спокойном состоянии) и в конце концов достигает поверхности белого карлика.

По мере падения вещества на белом карлике образуется тонкий плотный слой газа, температура которого постепенно увеличивается. В итоге (как раз за характерное время от нескольких лет до сотен лет) температура и плотность этого поверхностного слоя вырастают до столь высоких значений, что столкновения быстрых протонов начинают приводить к термоядерной реакции синтеза гелия. Но в отличие от центральных частей Солнца и других звёзд, где эта реакция протекает достаточно медленно, на поверхности белого карлика она носит взрывообразный характер (главным образом из-за очень большой плотности вещества).

Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки (кстати, весьма малой массы — «всего» около сотой доли массы Солнца), разлёт и свечение которой наблюдаются как вспышка новой звезды. Несмотря на огромную выделенную энергию, разлетающаяся оболочка не оказывает заметного воздействия на соседнюю звезду, и та продолжает поставлять топливо для следующего взрыва.

Как показывают оценки, ежегодно в нашей Галактике вспыхивает около сотни новых звёзд. Межзвёздное поглощение делает невозможным наблюдение всех этих объектов. Но самые яркие новые довольно часто бывают видны невооружённым глазом. К примеру, в 1975 г. новая звезда в созвездии Лебедя почти полгола «искажала» его крестообразную конфигурацию.

С началом эры рентгеновской астрономии (60-е гг.) выяснилось, что новые звёзды наблюдаются не только в оптическом диапазоне. Так, в 70-е гг. были открыты рентгеновские барстеры – регулярно вспыхивающие источники рентгеновского излучения. Механизм вспышек здесь в целом такой же, как и у классических новых звёзд. Разница в том, что второй компонент тесной двойной системы не белый карлик, а ещё более компактная нейтронная звезда радиусом всего около 10 км.

Наблюдение за новой звездой V 838 Monocerotis
Наблюдение за новой звездой V 838 Monocerotis

Вещество нормальной звезды типа Солнца или красного карлика «срывается» приливными силами со стороны нейтронной звезды, образуя аккреционный диск. Газ попадает на поверхность нейтронной звезды (если она не обладает сильным магнитным полем), нагревается, и это приводит к повторяющимся термоядерным взрывам. А из-за большой компактности нейтронной звезды плотность вещества, достигшего поверхности, оказывается чудовищно высокой. Разогретый термоядерными взрывами газ излучает в основном энергичные рентгеновские кванты.

Наконец нельзя не упомянуть ещё об одном типе новых звёзд – рентгеновских новых. Они вспыхивают в рентгеновском диапазоне на несколько месяцев, а затем полностью исчезают. Сейчас таких рентгеновских новых известно около десяти. Самое волнующее открытие последних лет сделанное совместными усилиями астрономов России, Украины и зарубежных специалистов, состоит в том, что во всех рентгеновских новых компактными звёздами являются, по-видимому, черные дыры массой около 10 масс Солнца. Это хороню согласуется с общей теорией относительности Эйнштейна, по которой масса чёрных дыр в звёздных системах должна быть не менее 3 – 5 солнечных. Так как чёрные дыры не имеют поверхности, на которой могло бы скапливаться аккрецируемое вещество, природа вспышки здесь уже иная, чем у классических новых звёзд и рентгеновских барстеров. Как полагают, вспышка рентгеновской новой связана с внезапным гигантским энерговыделением в окружающем чёрную дыру аккреционном диске. Выяснение причины такого неустойчивого поведения дисков — одна из актуальных задач современной астрофизики.



Страниц : 1